(Pages : 2)

Name.	

Reg. No.....

FIRST SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2020

(CBCSS)

Chemistry

CHE 1C 01-QUANTUM MECHANICS AND COMPUTATIONAL CHEMISTRY

(2019 Admissions)

Time : Three Hours

Maximum : 30 Weightage

Section A

Answer any **eight** questions. Each question carries a weightage of 1.

- 1. Write time dependent Schrödinger wave equation. Mention one application.
- 2. Which of the following are eigen functions of $\frac{d^2}{dx^2}$? Find the corresponding eigen values :
 - (a) $A \sin kx$.
 - (c) log x.

3. A particle is confined to one dimensional box of length 'a'. What is the degeneracy associated with

(b) e^{x^2} .

(d) e^{-ax}

the level having energy $\frac{14 h^2}{8 ma^2}$.

- 4. Write recursion formula for a simple harmonic oscillator. Explain its significance.
- 5. Represent \hat{L}_z in (a) Cartesian co-ordinates ; (b) Spherical polar co-ordinates.
- 6. Explain with example 'spin orbital'.
- 7. State and explain independent particle model.
- 8. What is STO? Write one example.
- 9. Explain the concept of force field in computational chemistry.
- 10. Write Z-matrix for H_2O .

mates.	and the second second	T. IS	Martin - Par - Martin	
	ICTOR	IA CO	LID	a constant
NY!	and the second se		- CG	18.0
.0			N.	
PAL	AKKAD	-878(DOI J	
(*/
*			1	1
GE GE	Al la sance a		ART	
The second	Lot all the lot	· / hora.		

 $(8 \times 1 = 8 \text{ weightage})$

Turn over

Section B

Answer any **six** questions. Each question carries a weightage of 2.

- 11. Define Hermitian operator. Show that Hermitian operators always have real eigen values.
- 12. A particle in one-dimensional box of length a is given by the state function $\sqrt{\frac{2}{a}} \sin(\frac{\pi}{a})x$. Find the average value of momentum along x direction. Justify your answer.
- 13. Find eigen functions and eigen values for a planar rotor.
- 14. Is wave function for H atom is Ne^{-r/a_0} . Show that the maximum probability of finding the electron is at $r = a_0$.
- 15. State and prove variation theorem.
- 16. Briefly discuss Hartree Fock self consistent field method of solving many electron atoms.
- 17. Write a brief account of semi empirical methods of computational Chemistry.
- 18. Briefly discuss structure of a Gaussian input file.

 $(6 \times 2 = 12 \text{ weightage})$

Section C

Answer any **two** questions. Each question carries a weightage of 5.

- 19. Briefly discuss postulates of quantum mechanics.
- 20. Apply Schrödinger equation for one dimensional simple harmonic oscillator. Find eigen functions and eigen values.
- 21. Apply Schrödinger wave equation for H atom transform into spherical polar co-ordinates. Separate the variables. Solve the $\oint(phi)$ equation.
- 22. Use perturbation method to find the ground state energy for a particle in one dimensional box with slanted bottom.

 $(2 \times 5 = 10 \text{ weightage})$

142563

D 13102

(**Pages : 2**)

Name.....

Reg. No.....

FIRST SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2021

(CBCSS)

Chemistry

CHE 1C 01-QUANTUM MECHANICS AND COMPUTATIONAL CHEMISTRY

(2019 Admission onwards)

Time : Three Hours

Maximum : 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend **all** questions in each section.
- 2. The minimum number of questions to be attended from the Section / Part shall remain the same.
- 3. The instruction if any, to attend a minimum number of questions from each sub section/sub part/ sub division may be ignored.
- 4. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Section A

Answer **eight** questions. Each question carries a weightage of 1.

- 1. Which of the following are well behaved functions. Justify your answer :
 - (a) A sin kx; (b) A sin⁻¹x; (c) e^{ix} ; and (d) e^{9x^2} .
- 2. Find the commutator of *x* and $\frac{d}{dx}$.
- 3. Explain quantum mechanical tunneling.
- 4. Write Rodrigue's formula for $H_{(r)}$ (Simple harmonic oscillator).
- 5. Explain with example spherical harmonics.
- 6. Is orbital for H atom is given by $\psi = Ne^{-r/a_0}$. Represent graphically. Explain.
- 7. State and explain variation theorem.

Turn over

142563

 $\mathbf{2}$

- 8. Write slater determinantal wave function for Li atom.
- 9. What are the assumptions of molecular mechanics approach of computational chemistry?
- 10. Explain the term 'split valence' basis set.

 $(8 \times 1 = 8 \text{ weightage})$

Section B

Answer **six** questions. Each question carries a weightage of 2.

- 11. Show that eigen functions of a Hermitian operator are mutually orthogonal.
- 12. Apply Schrödinger wave equation for a particle in one dimensional box. Find eigen functions and eigen values.
- 13. Show that Υx and Υy do not commute.
- 14. One of the solutions of H atom is N $(3 \cos^2 \theta 1)$. Draw polar plot. Explain.
- 15. Find the ground state energy of He by perturbation method.
- 16. What are the modifications suggested by fock in Hartree's SCF method ? Discuss.
- 17. Compare ab initio and semi empirical methods of computational Chemistry.
- 18. Write a brief account of classification of basis sets.

 $(6 \times 2 = 12 \text{ weightage})$

Section C

Answer any **two** questions. Each question carries a weightage of 5.

- 19. Apply Schrödinger wave equation for a non-planar rotator. Find eigen functions and eigen values.
- 20. Use variation theorem to find the ground state energy of particle in one-dimensional box of length 'a'. Use the trial function $\Phi = x (a x)$.
- (a) Show that if the operators commute they will have the same set of eigen functions and eigen values. Use the theorem to rationalise Heisenberg uncertainty principle.
 - (b) State and discuss expectation value postulate of quantum mechanics.
- 22. Discuss briefly:
 - (a) Symmetry breaking.
 - (b) Space quantization.

 $(2 \times 5 = 10 \text{ weightage})$

142563

(**Pages : 2**)

Name.....

Reg. No.....

FIRST SEMESTER M.Sc. (CBCSS) REGULAR/SUPPLEMENTARY DEGREE EXAMINATION, NOVEMBER 2022

Chemistry

CHE1C01-QUANTUM MECHANICS AND COMPUTATIONAL CHEMISTRY

(2019 Admission onwards)

Time : Three Hours

Maximum Weightage : 30

Section A

Answer any **eight** questions. Each question carries a weightate of 1.

1. Which of the following one well behaved functions :

(a) e^x ; (b) e^{ix} ; (c) e^{-ax^2} ; (d) $\sin^{-1} x$.

- 2. Explain with example 'conservative system'.
- 3. The energy of a particle in cubical box of length 'a' is $\frac{14h^2}{8ma^2}$. What is the degeneracy of the level.
- 4. Explain the term 'Symmetry breaking'.
- 5. The solutions of a planar rotor are $\frac{1}{\sqrt{\Pi}}e^{im\phi}$. Express it as a real function.
- 6. 1s wave function for H atom is Ae^{-r/a_0} . Represent the function graphically. Explain.
- 7. State and explain independent particle model.
- 8. What do you mean by 'Slater type of orbitals' ? Write one example.
- 9. Explain the term 'molecular mechanics' in computational chemistry.
- 10. Write Z-matrix for NH₃.

 $(8 \times 1 = 8)$

Section B

Answer any **six** questions. Each question carries a weightage of 2.

11. Show that eigen functions of a Hermitian operator are mutually orthogonal.

Turn over

349278

- 12. Write Rogrigue's formula. Use the formulate to find $H_{(X)}$ for v = 4 in simple harmonic oscillator.
- 13. Find the commutator of $\hat{\mathbf{L}}_x$ and $\hat{\mathbf{L}}_y$.
- 14. 1s wave function for H atom is Ae^{-r/a_0} . Show that the maximum probability of finding the electron is at $r = a_0$.
- 15. State and prove Variation theorem.
- 16. Briefly discuss Fock's modification of Hartree self consistent field method.
- 17. Compare semi empirical and abinitio methods of computational chemistry.
- 18. How do you classify basis sets ? Discuss.

 $(6 \times 2 = 12)$

Section C

Answer any **two** questions. Each question carries a weightage of 5.

- 19. Discuss postulates of quantum mechanics.
- 20. Apply Schrödinger wave equation for a spherical rotor. Find eigen functions and eigen values.
- 21. Use variation theorem to find the ground state energy of particle in one dimensional box with slanted bottom.
- 22. (a) Find the ground state energy of He by first order Perturbation method.
 - (b) What are the general features of a Gaussian input file ? Discuss.

 $(2 \times 5 = 10)$